1、熵增就是体系的混乱度增大,同一物质,固态、液态、气态的混乱度依次增大。
例如:电解水的反应就是一个熵增的过程,液体变成气体,混乱度增大了。固体变成气体(像碳酸钙高温分解),液体的过程都是熵增的。
2、熵减就是混乱程度减小。如果反应物无固体而生成物有固体,那么这个反应是熵减反应。
熵
物理学术语
熵(entropy)指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。熵的概念由鲁道夫·克劳修斯(Rudolf Clausius)于1850年提出,并应用在热力学中。1948年,克劳德·艾尔伍德·香农(Claude Elwood Shannon)第一次将熵的概念引入信息论中。
1、熵增就是体系的混乱度增大,同一物质,固态、液态、气态的混乱度依次增大。
例如:电解水的反应就是一个熵增的过程,液体变成气体,混乱度增大了。固体变成气体(像碳酸钙高温分解),液体的过程都是熵增的。
2、熵减就是混乱程度减小。如果反应物无固体而生成物有固体,那么这个反应是熵减反应。
通过外力“干预”做功、吸收外界能量。比如将液体结晶为固态,就是一个熵减过程,当中它需要外界压力和能量来完成这一过程。熵是一个抽象的物理学量,是一个通过运算推导出来的量。其物理意义代表系统的无序程度。无序程度增加,熵增;反之熵减。
比如,蜡烛、冰块融化,化学中的分解反应,电离第一过程,乙醇和水混合等都是熵增加的过程。而与之相反的过程熵减。
1、熵增就是体系的混乱度增大,同一物质,固态、液态、气态的混乱度依次增大。
例如:电解水的反应就是一个熵增的过程,液体变成气体,混乱度增大了。固体变成气体(像碳酸钙高温分解),液体的过程都是熵增的。
2、熵减就是混乱程度减小。如果反应物无固体而生成物有固体,那么这个反应是熵减反应。
熵增定律是克劳修斯提出的热力学定律,克劳修斯引入了熵的概念来描述这种不可逆过程,即热量从高温物体流向低温物体是不可逆的,其物理表达式为:S =∫dQ/T或ds = dQ/T。
孤立系统
孤立系统总是趋向于熵增,最终达到熵的最大状态,也就是系统的最混乱无序状态。但是,对开放系统而言,由于它可以将内部能量交换产生的熵增通过向环境释放热量的方式转移,所以开放系统有可能趋向熵减而达到有序状态。
熵增的热力学理论与几率学理论结合,产生形而上的哲学指导意义:事物的混乱程度越高,则其几率越大。
现代科学还用信息这个概念来表示系统的有序程度。信息本来是通讯理论中的一个基本概念,指的是在通讯过程中信号不确定性的消除。后来这个概念推广到一般系统,并将信息量看作一个系统有序性或组织程度的量度,如果一个系统有确定的结构,就意味着它已经包含着一定的信息。这种信息叫做结构信息,可用来表示系统的有序性;结构信息量越大,系统越有序。因此,信息意味着负熵或熵的减少
熵减是熵函数的负向变化量,负熵是物质系统有序化、组织化、复杂化状态的一种量度。齐拉德首次答提出了“负熵”这个经典热力学中从未出现过的概念和术语。熵是用以表示某些物质系统状态的一种量度或说明其可能出现的程度,或者说是描述一个孤立系统中物质的无序程度。
在等势面上,熵增原理反映了非热能与热能之间的转换具有方向性,即非热能转变为热能效率可以100%,而热能转变成非热能时效率则小于100%。
生物越进化,组织化程度越高,功能越复杂、越精巧(即有序化程度越高),所以熵越减小。
严格来说,这些在一定条件下自发顺利进行反应都是熵增反应。
如果你要更加可靠的判断方法,那么有一个表,里面有大多数物质的熵值S.单质的熵S默认为0,整个反应方程式熵S=反应产物熵×系数-反应产物×系数,得到的反应方程的S>0,就是熵增反应。
所谓打破封闭系统那是最高境界的"熵减",阶层固化无法打破封闭系统是熵增。
熵增反应。
铁在氧气中燃烧的现象是剧烈燃烧,火星四射,放出大量的热,生成一种黑色固体。注意事项:做化学实验时,瓶底要放少量水或细沙,防止生成的固体物质溅落下来,炸裂瓶底。
熵增就是体系的混乱度增大,同一物质,固态、液态、气态的混乱度依次增大,例如:固体反应生成液体气体或有气体生成(像碳酸钙高温分解)则为熵增.
熵增是真正的物理现象,从有序到无序。。不会有互补的平衡来形容这一现象。所谓的平衡只可能是特定空间范围内能量保持守恒,用熵减这个概念来形容这种平衡,肯定是不合适的。